

Basic Ground-rules

- NEC National Electrical Code specifies wire
- We'll simply cover some rules of thumb
- Ours will be an overview: see NEC for details
- I'm not telling you what to do or use
- Be smart: do it right the first time (costs less)
- Read, plan, consult, design, review, build

Wire Capacity

- Wire choice: Al vs. Cu vs. Clad
- It is all about heat
- You don't want to overheat insulation
- You don't want to melt the wire
- You don't want to start a fire
- Cu is the most affordable & easy to solder

Copper is it.. For now

- Copper is the only choice for your wire
- Insulation of used wire is unknown...use new
- 75 degree C (167 F as one max limit)
- 75 degree C will produce 3rd Degree skin burn
- Obviously way too hot...
- If you feel heat in your wire.. Go up a gauge
- Better: use a reliable meter and a little math

Electrical Computations

- V = I x R : volts = amps times resistance
- R = V / I : resistance = volts divided by amps
- I = V / R : amps = volts divided by resistance

- P = V x I : watts = volts times amps
- $P = V^2 \times R$: watts = volts squared x resistance see next slide for all of the combinations..

NEC for Homes

- 14 AWG = 15 Amp max
- 12 AWG = 20 Amp max
- 10 AWG = 30 Amp max
- Note these are the max that you should expect out of wire...
- Most homes are using switching power supplies in TV's, Microwaves, Amplifiers in Sound systems... and the neutral is warm!

Wire is a resistor

Wire Gauge		Max Amps in Air Unconfined Wire		Max Amps for Confined wire	
•	24 Ga	3.5 Amps	•	2.1 Amps	
•	22	7.0	•	5.0	
•	20	11.0	•	7.5	
•	18	16.0	•	10.0	
•	16	22.0	•	13.0	
•	14	32.0	•	17.0	
•	12	41.0	•	23.0	
•	10	55.0	•	33.0	

How many ZW's?

- Start with a 15 Amp circuit.. 14 ga. @120 vac
- P = V x I or 275 watts
- I = 275 / 120 = 2.3 Amps
- Thus, 15/2.3 = 6.5 or 6 ZWs is the limit.
- Crazy? You bet...

6 ZW's?

- Hey is that safe???
- Sure if household wires are not kinked
- Perhaps one in ten is kinked
- So what's the limit...? I use about 2/3rds max
- Thus, it's not 6 ZW's but 4 ZW's max by my rules...

De rated wire

- Resistance goes up with temperature
- Use the 60 C or 140 F tables rather than cold wire tables at 20 C or 68F for safety.
- Be conservative as in the following table

Ohms / Foot : Long Runs

```
• 24 AWG = 3.12 Ohm / 100 ft
```

```
• 22 = 1.96
```

•
$$14 = 0.307$$

• 12 = 0.193 (these are all de-rated ~3% for safety. RGB)

Voltage Drop.. Thick wire

- An HO engine draws about 1 amp give or take
- Lets' start with track being 50 feet from the transformer and figure the drop with 12 ga
- Two wires x 50 ft = 100 ft... like in the table
- $V = I \times R = 1.0 \text{ Amp } \times 0.193 \text{ Ohm} = 0.193 \text{ Vdc}$
- If we apply 6 volts.. Then 6 .193 = 5.807 vdc
- Or a voltage drop that is about 3.5 % ..

Voltage Drop.. Thin wire

- An HO engine draws about 1 amp give or take
- Lets' start with track being 50 feet from the transformer and figure the drop with 24 ga
- Two wires x 50 ft = 100 ft... like in the table
- $V = I \times R = 1.0 \text{ Amp } \times \text{ Ohm } 3.12 = 3.12 \text{ Vdc}$
- If we apply 6 volts.. Then 6 3.12 = 2.88 vdc
- Or a voltage drop that is about 52 % .. Wow

